Calculus

Problem 1: Sailing Ships

At 1:00 PM ship A is 200 km east of ship B. Ship A is sailing north at $40 \mathrm{~km} / \mathrm{h}$ and ship B is sailing east at $30 \mathrm{~km} / \mathrm{h}$. How fast is the distance between the ships changing at 4:00 PM?

1 Draw a picture and label your variables:

3 Take the derivative of the equation created in step 2 with respect to time:

$$
\begin{aligned}
D^{2} & =\left(\begin{array}{ll}
200 & x
\end{array}\right)^{2}+y^{2} \\
2 D \cdot \frac{d D}{d t} & =2\left(\begin{array}{ll}
200 & x
\end{array}\right) \cdot \frac{d x}{d t}+2 y \cdot \frac{d y}{d t} \\
D \cdot \frac{d D}{d t} & =\left(\begin{array}{ll}
200 & x
\end{array}\right) \cdot \frac{d x}{d t}+y \cdot \frac{d y}{d t}
\end{aligned}
$$

5 Use x and y to find D (the distance between the ships):

$$
\begin{aligned}
D^{2} & =\left(\begin{array}{ll}
200 & 90
\end{array}\right)^{2}+120^{2} \\
D^{2} & =12,100+14,400 \\
D^{2} & =26,500 \\
D & =\sqrt{26,500}
\end{aligned}
$$

2 Create an equation (Pythagorean Theorem) based on the given data and your picture. Also, identify the rates:

$$
\begin{aligned}
D^{2} & =\left(\begin{array}{ll}
200 \quad x
\end{array}\right)^{2}+y^{2} \\
\frac{d x}{d t} & =30 \mathrm{~km} / \mathrm{h} \\
\frac{d y}{d t} & =40 \mathrm{~km} / \mathrm{h} \\
\frac{d D}{d t} & =? \text { (This is what we want to find!) }
\end{aligned}
$$

4 Find the distance that ship A traveled, y, and the distance that ship B traveled, x :
At $\mathrm{t}=3$:

$$
\begin{aligned}
& x=30 \cdot 3=90 \mathrm{~km} \\
& y=40 \cdot 3=120 \mathrm{~km}
\end{aligned}
$$

6 Plug in x, y and D and solve for $\frac{d D}{d t}$:

$$
\begin{aligned}
\sqrt{26,500} \cdot \frac{d D}{d t} & =\left(\begin{array}{ll}
200 & 90
\end{array}\right)(35)+120(40) \\
\sqrt{26,500} \cdot \frac{d D}{d t} & =3,850+4,800 \\
\sqrt{26,500} \cdot \frac{d D}{d t} & =950 \\
\frac{d D}{d t} & =\frac{950}{\sqrt{26,500}} \\
\frac{d D}{d t} & \approx 5.84 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Calculus

Problem 2: Volume A.K.A. The Leaking Cone

A cone shaped tank is filled with water but is leaking at a constant rate of $2 m^{3} / h$. The base radius of the tank is 6 m and the height is 15 m .
(a) How fast is the height of the water changing when the water is at $5 m$?
(b) How fast is the radius changing when the height of the water is at 5 m ?

1(a) Draw a picture and label your variables:

2(a) Create an equation (Volume of a cone) based on the given data and your picture, and identify rates:

$$
V=\frac{1}{3} \pi r^{2} h
$$

The radius, r can be obtained using similar triangles

$$
\begin{aligned}
\frac{r}{h} & =\frac{6}{15} \Longrightarrow r=\frac{6}{15} h \\
V & =\frac{1}{3} \pi\left(\frac{6}{15} h\right)^{2} h \\
V & =\frac{12}{225} \pi h^{3}
\end{aligned} \quad \begin{aligned}
& \frac{d V}{d t}=2 m^{3} / h \\
& \frac{d r}{d t}=\text { rate for radius } \\
& \frac{d h}{d t}=\text { rate for height }
\end{aligned}
$$

3(a) Take the derivative of the equation created in step 2 with respect to time:

$$
\begin{aligned}
V & =\frac{12}{225} \pi h^{3} \\
V & =3\left(\frac{12}{225}\right) \pi h^{2} \\
\frac{d V}{d t} & =\frac{36}{225} h^{2} \frac{d h}{d t}
\end{aligned}
$$

Now, for part (b), we get to use information from part (a) and the ratio we used in step 2(b) to find $\frac{d r}{d t}$.

1(b) Take the derivative of the equation solved for r from similar triangles with respect to time:

$$
\begin{aligned}
r & =\frac{6}{15} h \\
\frac{d r}{d t} & =\frac{6}{15} \cdot \frac{d h}{d t}
\end{aligned}
$$

2(b) Plug in $\frac{d h}{d t}$ from part (a) and solve:

$$
\begin{aligned}
& \frac{d r}{d t}=\frac{6}{15}\left(\frac{1}{2}\right) \\
& \frac{d r}{d t}=\frac{1}{5}
\end{aligned}
$$

This means that the radius of the water is changing at a rate of $\frac{1}{5} \mathrm{~m} / \mathrm{h}$

