

California State University SAN MARCOS

Calculus

Related Rates

Problem 1: Sailing Ships

At 1:00 PM ship A is 200 km east of ship B. Ship A is sailing north at 40 km/h and ship B is sailing east at 30 km/h. How fast is the distance between the ships changing at 4:00 PM?

1 Draw a picture and label your variables: $D \qquad A \qquad y \qquad A_0 \qquad y \qquad A_0 \qquad A_$	2 Create an equation (Pythagorean Theo- rem) based on the given data and your pic- ture. Also, identify the rates: $D^{2} = (200 x)^{2} + y^{2}$ $\frac{dx}{dt} = 30km/h$ $\frac{dy}{dt} = 40km/h$ $\frac{dD}{dt} = ?$ (This is what we want to find!)
3 Take the derivative of the equation created in step 2 with respect to time: $D^{2} = (200 x)^{2} + y^{2}$ $2D \cdot \frac{dD}{dt} = 2(200 x) \cdot \frac{dx}{dt} + 2y \cdot \frac{dy}{dt}$ $D \cdot \frac{dD}{dt} = (200 x) \cdot \frac{dx}{dt} + y \cdot \frac{dy}{dt}$	4 Find the distance that ship A traveled, y, and the distance that ship B traveled, x: At t=3: $x = 30 \cdot 3 = 90 km$ $y = 40 \cdot 3 = 120 km$
5 Use x and y to find D (the distance be- tween the ships): $D^2 = (200 90)^2 + 120^2$ $D^2 = 12,100 + 14,400$ $D^2 = 26,500$ $D = \sqrt{26,500}$	$\begin{array}{l} \textbf{6 Plug in } x, y \ \textbf{and } D \ \textbf{and solve for } \frac{dD}{dt} \text{:} \\ \sqrt{26,500} \cdot \frac{dD}{dt} = & (200 90)(35) + 120(40) \\ \sqrt{26,500} \cdot \frac{dD}{dt} = & 3,850 + 4,800 \\ \sqrt{26,500} \cdot \frac{dD}{dt} = 950 \\ \frac{dD}{dt} = \frac{950}{\sqrt{26,500}} \\ \frac{dD}{dt} \approx 5.84 km/h \end{array}$

California State University SAN MARCOS

Calculus

Problem 2: Volume A.K.A. The Leaking Cone

A cone shaped tank is filled with water but is leaking at a constant rate of $2m^3/h$. The base radius of the tank is 6m and the height is 15m.

- (a) How fast is the height of the water changing when the water is at 5m?
- (b) How fast is the radius changing when the height of the water is at 5m?

Now, for part (b), we get to use information from part (a) and the ratio we used in step 2(b) to find $\frac{dr}{dt}$.

2(b) Plug in $\frac{dh}{dt}$ from part (a) and solve: 1(b) Take the derivative of the equation solved for r from similar triangles with re- $\frac{dr}{dt} = \frac{6}{15} \left(\frac{1}{2}\right)$ spect to time: $\frac{dr}{dt} = \frac{1}{5}$ $r = \frac{6}{15}h$ $\frac{dr}{dt} = \frac{6}{15} \cdot \frac{dh}{dt}$ This means that the radius of the water is changing at a rate of $\frac{1}{5}m/h$

