

CALCULUS CONVERGENCE AND DIVERGENCE

TEST NAME	SERIES	CONVERGES	DIVERGES	ADDITIONAL INFO
nth TERM TEST	$\sum_{n=1}^{\infty} a_n$		$ if \lim_{n \to \infty} a_n \neq 0 $	One should perform this test first for divergence.
GEOMETRIC SERIES TEST	$\sum_{n=1}^{\infty} a_n r^{n-1}$	if $1 < r < 1$	if r 1	If convergent, converges to $s_n = \frac{a}{1-r}$
P-SERIES TEST	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	if $p > 1$	if $p \le 1$	Can be used for comparison tests.
INTEGRAL TEST	$\sum_{n=1}^{\infty} f(x)$	if $\int_{1}^{\infty} f(x) \cdot dx$ converges.	if $\int_{1}^{\infty} f(x) \cdot dx$ diverges.	$f(x)$ has to be continuous, positive, decreasing on $[1, \infty)$.
DIRECT COMPARISON TEST	$\sum_{n=1}^{\infty} a_n$	if $0 \le a_n \le b_n$, and $\sum_{n=1}^{\infty} b_n$ converges.	if $0 \le b_n \le a_n$, and $\sum_{n=1}^{\infty} b_n \text{ diverges.}$	For convergence, find a larger convergent series. For divergence, find a smaller divergent series.
LIMIT COMPARISON TEST	$\sum_{n=1}^{\infty} a_n$	if $\sum_{n=1}^{\infty} b_n$ converges, and $\lim_{n \to \infty} \frac{a_n}{b_n} > 0$.	if $\sum_{n=1}^{\infty} b_n$ diverges, and $\lim_{n \to \infty} \frac{a_n}{b_n} > 0$.	If necessary, apply L'Hospital's Rule. Inconclusive if $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ or ∞ .
ALTERNATING SERIES TEST	$\sum_{n=1}^{\infty} (1)^{n+1} a_n$	if $a_{n+1} \le a_n$, and $\lim_{n \to \infty} a_n = 0$.	if $\lim_{n \to \infty} a_n \neq 0$.	To prove convergence prove that the sequence is decreasing and its limit is zero.
RATIO TEST	$\sum_{n=1}^{\infty} a_n$	$ if \lim_{n \to \infty} \frac{a_{n+1}}{a_n} < 1. $	$\text{if } \lim_{n \to \infty} \frac{a_{n+1}}{a_n} > 1.$	The test fails if $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1.$
ROOT TEST	$\sum_{n=1}^{\infty} a_n$	$\text{if } \lim_{n \to \infty} \sqrt[n]{ a_n } < 1.$	$\text{if } \lim_{n \to \infty} \sqrt[n]{ a_n } > 1.$	The test fails if $\lim_{n \to \infty} \sqrt[n]{ a_n } = 1.$

North: 760-750-4101 South: 760-750-7324

CALCULUS CONVERGENCE AND DIVERGENCE

DEFINITION OF CONVERGENCE AND DIVERGENCE

An infinite series $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots$ is **convergent** if the sequence $\{s_n\}$ of partial sums, where each partial sum is denoted as $s_n = \sum_{n=1}^{n} a_n = a_1 + a_2 + \dots + a_n$, is convergent. If the sequence $\{s_n\}$ is divergent, then the series is called **divergent**.

ABSOLUTELY CONVERGENT

A series $\sum a_n$ is called **absolutely convergent** if the series of the absolute values $\sum |a_n|$ is convergent.

CONDITIONALLY CONVERGENT

A series $\sum a_n$ is called **conditionally convergent** if it is convergent but not absolutely convergent.

$$\sum_{n=1}^{\infty} c \cdot a_n = c \cdot \sum_{n=1}^{\infty} a_n \qquad \qquad \sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n \qquad \sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n \qquad \sum_{n=1}^{\infty} b_n$$

POWER SERIES

A **power series** is a series of the form $\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots$ where x is a variable and the c_n 's are called the **coefficients** of the series.

A series of the form $\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \dots$ is called a **power series in** $(\mathbf{x} - \mathbf{a})$ or a **power series centered at a** or a **power series about a**.

For a given power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ there are only three possibilities:

- (i) The series converges only when x = a.
- (ii) The series converges for all x.
- (iii) There is a positive number R such that the series converges if |x a| < R and diverges if |x a| > R.

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \ldots = \sum_{n=0}^{\infty} x^n \quad |x| < 1$$

If the power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ has radius of convergence R>0, then the function defined by $f(x)=\sum_{n=0}^{\infty} c_n(x-a)^n$ is differentiable on the interval (a-R,a+R) and

(i)
$$f'(x) = \sum_{n=0}^{\infty} nc_n(x-a)^{n-1}$$
.

(ii)
$$\int f(x) = C + \sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1}$$
.

Tel:

North: 760-750-4101 South: 760-750-7324