STEM Success Center

Ch. 3 Stoichiometry

. What is stoichiometry?

- Stoichiometry calculations are used to convert grams, moles, and volume using molarity by relating amounts of reactants and products in a balanced chemical equation.
- Molarity $(\mathrm{mol} / \mathrm{L})$ is a relation between moles of a solute and volume of the solution and is a useful conversion factor in stoichiometry.
- Mole ratios $(\mathrm{mol} / \mathrm{mol})$ between reactants and products are also useful conversion factors.

. General steps of how to set up conversions

- Always balance your equation first (make sure that there is an equal amount of reactants and products in your equation)
- For a balanced equation, $a A+b B \rightarrow c+d D$

To go from a given grams of A to grams of B use moles of A and then moles of B,

Grams of A	Moles of A	Moles of B	Grams of B
Starting point. Use molar mass $(\mathrm{g} /$ mol $)$ of A to convert to moles of A	Use coefficients (lowercase letters) from the balanced chemical equation to convert moles of A to moles of B	Use molar mass (g/mol) of B to convert to grams of B	Goal

$\operatorname{grams} A \times \frac{\operatorname{mol} A}{\operatorname{grams} A} \times \frac{\operatorname{mol} \operatorname{lcoefficient})}{\operatorname{mol} a(\text { coefficient })} \times \frac{\operatorname{grams} B}{\operatorname{mol} B}=\operatorname{grams} B$

. Practice

Convert 0.355 moles of NaCl to grams.
$0.355 \mathrm{~mol} \mathrm{NaCl} \times \frac{58.44 \mathrm{~g} \mathrm{NaCl}}{1 \mathrm{~mol} \mathrm{NaCl}}=$?

. Practice

Aqueous solutions of sodium hypochlorite (NaOCl), bleach, are prepared by reacting sodium hydroxide with chlorine. How many grams of NaOH are needed to react with $30.0{\mathrm{~g} \text { of } \mathrm{Cl}_{2} \text { ? How }}^{\text {? }}$ many moles of NaOH are needed to react with 30.0 g of Cl_{2} ?
$2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{NaOCl}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$30.0 \mathrm{~g} \mathrm{Cl}_{2} \times \frac{1 \mathrm{~mol} \mathrm{Cl}_{2}}{70.9 \mathrm{~g} \mathrm{Cl}_{2}} \times \frac{? \mathrm{~mol} \mathrm{NaOH}}{? \mathrm{~mol} \mathrm{Cl}_{2}} \frac{40.0 \mathrm{~g} \mathrm{NaOH}}{1 \text { mol NaOH}}=?$

Solutions

. Practice

Convert 0.355 moles of NaCl to grams:
$0.355 \mathrm{~mol} \mathrm{NaCl} \times \frac{58.44 \mathrm{~g} \mathrm{NaCl}}{1 \mathrm{~mol} \mathrm{NaCl}}=20.7 \mathrm{~g} \mathrm{NaCl}$

. Practice

Aqueous solutions of sodium hypochlorite (NaOCl), bleach, are prepared by reacting sodium hydroxide with chlorine. How many grams of NaOH are needed to react with $30.0{\mathrm{~g} \text { of } \mathrm{Cl}_{2} \text { ? }}^{\text {? }}$
$2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{NaOCl}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$30.0 \mathrm{~g} \mathrm{Cl}_{2} \times \frac{1 \mathrm{~mol} \mathrm{Cl}_{2}}{70.9 \mathrm{~g} \mathrm{Cl}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~mol} \mathrm{Cl}_{2}} \frac{40.0 \mathrm{~g} \mathrm{NaOH}}{1 \mathrm{~mol} \mathrm{NaOH}}=33.9 \mathrm{~g} \mathrm{NaOH}$ needed to react with $30.0 \mathrm{~g} \mathrm{of} \mathrm{Cl}_{2}$.
$33.9 \mathrm{~g} \mathrm{NaOH} \times \frac{1 \mathrm{~mol} \mathrm{NaOH}}{40.0 \mathrm{~g} \mathrm{NaOH}}=0.848 \mathrm{~mol} \mathrm{NaOH}$ are needed to react with 30.0 g of Cl_{2}.

