

Ch. 3 Stoichiometry

. What is stoichiometry?

- Stoichiometry calculations are used to convert grams, moles, and volume using molarity by relating amounts of reactants and products in a balanced chemical equation.
- Molarity (mol/L) is a relation between moles of a solute and volume of the solution and is a useful conversion factor in stoichiometry.
- Mole ratios (mol/mol) between reactants and products are also useful conversion factors.

. General steps of how to set up conversions

- *Always* balance your equation first (make sure that there is an equal amount of reactants and products in your equation)
- For a balanced equation, a A + b B \rightarrow c C + d D

To go from a given grams of A to grams of B use moles of A and then moles of B,

Grams of A	Moles of A	Moles of B	Grams of B
Starting point. Use molar mass (g/mol) of A to convert to moles of A	Use coefficients (lowercase letters) from the balanced chemical equation to convert moles of A to moles of B	Use molar mass (g/mol) of B to convert to grams of B	Goal

 $\overline{grams A \times \frac{mol A}{grams A} \times \frac{mol b (coefficient)}{mol a (coefficient)} \times \frac{grams B}{mol B}} = grams B$

. Practice

Convert 0.355 moles of NaCl to grams.

$$0.355 \text{ mol NaCl} \times \frac{58.44 \text{ g NaCl}}{1 \text{ mol NaCl}} ?$$

. Practice

Aqueous solutions of sodium hypochlorite (NaOCl), bleach, are prepared by reacting sodium hydroxide with chlorine. How many grams of NaOH are needed to react with 30.0 g of Cl₂? How many moles of NaOH are needed to react with 30.0 g of Cl₂? 2 NaOH (aq) + Cl₂ (g) \rightarrow NaOCl (aq) + NaCl (aq) + H₂O (1)

 $30.0 \text{ g } \text{Cl}_2 \times \frac{1 \text{ mol } \text{Cl}_2}{70.9 \text{ g } \text{Cl}_2} \times \frac{2 \text{ mol } \text{NaOH}}{2 \text{ mol } \text{Cl}_2} \frac{40.0 \text{ g } \text{NaOH}}{1 \text{ mol } \text{NaOH}}?$

Solutions

. Practice

Convert 0.355 moles of NaCl to grams:

$$0.355 \text{ mol NaCl} \times \frac{58.44 \text{ g NaCl}}{1 \text{ mol NaCl}} = 20.7 \text{ g NaCl}$$

. Practice

Aqueous solutions of sodium hypochlorite (NaOCl), bleach, are prepared by reacting sodium hydroxide with chlorine. How many grams of NaOH are needed to react with 30.0 g of Cl₂?

2 NaOH (aq) + Cl_2 (g) \rightarrow NaOCI (aq) + NaCI (aq) + H₂O (l)

 $30.0 \text{ g Cl}_2 \times \frac{1 \text{ mol Cl}_2}{70.9 \text{ g Cl}_2} \times \frac{2 \text{ mol NaOH}}{1 \text{ mol Cl}_2} \frac{40.0 \text{ g NaOH}_-}{1 \text{ mol NaOH}} 33.9 \text{ g NaOH needed to react with } 30.0 \text{ g of Cl}_2.$

33.9 g NaOH $\times \frac{l \mod NaOH}{40.0 g NaOH} = 0.848$ mol NaOH are needed to react with 30.0 g of Cl₂.