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(Received 26 February 2013; accepted 7 December 2013) 

Semi-deciduous forest in the Amazon Basin is sensitive to temporal variation in 
surface water availability that can limit seasonal rates of leaf and canopy gas exchange. 
We estimated the seasonal dynamics of gross primary production (GPP) over 3 years 
(2005–2008) using eddy covariance and assessed canopy spectral reflectance using 
MODIS imagery for a mature tropical semi-deciduous forest located near Sinop, Mato 
Grosso, Brazil. A light-use efficiency model, known as the Vegetation Photosynthesis 
Model (VPM), was used to estimate seasonal and inter-annual variations in GPP as a 
function of the enhanced vegetation index (EVI), the land surface water index (LSWI), 
and local meteorology. Our results indicate that the standard VPM was incapable of 
reproducing the seasonal variation in GPP, primarily because the model overestimated 
dry-season GPP. In the standard model, the scalar function that alters light-use effi-
ciency (εg) as a function of water availability (Wscalar) is calculated as a linear function 
of the LSWI derived from MODIS; however, the LSWI is negatively correlated with 
several measures of water availability including precipitation, soil water content, and 
relative humidity (RH). Thus, during the dry season, when rainfall, soil water content, 
and RH are low, LSWI, and therefore, Wscalar, are at a seasonal maximum. Using 
previous research, we derived new functions for Wscalar based on time series of RH and 
photosynthetic photon flux density (PPFD) that significantly improved the perfor-
mance of the VPM. Whether these new functions perform equally well in water 
stressed and unstressed tropical forests needs to be determined, but presumably 
unstressed ecosystems would have high cloud cover and humidity, which would 
minimize variations in Wscalar and GPP to spatial and/or temporal variation in water 
availability. 

1. Introduction 

Tropical forests have received special attention because they have extremely high biodiversity 
(Losos and Leigh 2004), account for 40% of net primary productivity (NPP) and 30% of all 
terrestrial carbon stored in biomass (Saatchi et al. 2011), and have been severely impacted by 
land-use and land-cover change (Nepstad et al. 2008; Davidson  et  al.  2012). Brazil has one of 
the largest expanses of rainforest of the world, and contains approximately 20% of the global 
carbon store (Bernoux et al. 2002). However, conversion of forest to pasture and/or cropland 
released approximately 0.7–1.4 PgC year−1 to the atmosphere between 1996 and 2005 
(Houghton 2005). It is estimated that the Amazon forest will be reduced to half the original 
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size by 2030, which can modify the regional climate and impact ecosystem functioning 
(Laurance 2006; Nepstad et al. 2008). Recent analyses suggest that the sink strength of the 
Amazon Basin has declined over the last two decades, perhaps because of an intensification of 
the dry season (Gloor et al. 2012). Quantifying the magnitude and temporal dynamics of net 
terrestrial C exchange is essential for understanding the ecosystem functioning of Amazon 
rainforest (Hutyra et al. 2007; Vourlitis et al. 2011; Kim et al. 2012). 

Studies relying on satellite-based remote sensing indicate that canopy greenness in the 
Amazon forest is negatively correlated with precipitation patterns, resulting in higher pro-
ductivity during the dry season (Saleska et al. 2003; Huete et al. 2006; Myneni et  al.  2007; 
Hutyra et al. 2007; Davidson  et  al.  2012). These seasonal patterns are thought to be due to a 
stronger light limitation to primary production than water during the dry season, when 
radiation is at a seasonal maximum (Saleska et al. 2003, 2009; Hutyra  et  al.  2007). 
However, this pattern is not general to the Amazon Basin, and in particular, forests in the 
southern part of the basin reportedly experience either no increase or a decline in productivity 
during the dry season in response to drought (Samanta et al. 2010; Zhao and Running 2010; 
Vourlitis et al. 2011). In particular, semi-deciduous forests in the southern Amazon Basin, 
which occupy a climatic transition between humid tropical forest and savanna, experience 
high annual precipitation but with distinct wet and dry seasons (da Rocha et al. 2009; Vourlitis 
et al. 2004, 2008). Seasonal drought has been shown to limit leaf gas exchange (Miranda et al. 
2005; Sendall, Vourlitis, and Lobo 2009), gross primary production (GPP), and soil and 
whole-ecosystem respiration (Valentini et al. 2008; Vourlitis et al. 2004, 2005, 2011); and in 
many respects, seasonal variations in water and net CO2 exchange of these forests more 
closely resemble those reported for savanna than the Amazonian forest (Meir et al. 2008; 
Vourlitis and da Rocha 2010). These large spatial variations highlight the complex interactions 
between drought, phenology, and productivity across the Amazon Basin (Saleska et al. 2009), 
and the need to link ground-based and remotely based observations of surface biophysical 
phenomena to understand basin-wide variations in forest function (Silva et al. 2013). 

Recently, the Vegetation Photosynthesis Model (VPM) was developed (Xiao, Hollinger, 
et al. 2004; Xiao, Zhang, et al. 2004) to predict light absorption by chlorophyll and GPP of 
terrestrial ecosystems, based on the concept that the vegetation canopy is composed of 
chlorophyll and non-photosynthetically active vegetation (NPV). The VPM has been used 
to predict GPP for flux tower sites in temperate deciduous broadleaf forest (Xiao, Hollinger, 
et al. 2004; Xiao, Zhang, et al. 2004), Amazonian tropical forest (Xiao et al. 2005), and 
croplands (Li et al. 2007; Wang, Xiao, and Yan 2010). Here, we extend these analyses to the 
semi-deciduous forest of the southern Amazon Basin to determine the effectiveness of the 
VPM to explain the observed seasonal and inter-annual variations in GPP and to understand 
the underlying biophysical mechanisms for these variations. Our objectives were to evaluate 
(i) links between vegetation indices derived from MODIS land-surface reflectance and 
ground-based measurements of forest structure and function, and (ii) the potential of VPM 
for estimating GPP of an Amazon–savanna transitional forest. We hypothesize that (i) 
seasonal and/or inter-annual drought will be the primary factor in limiting GPP and canopy 
greenness and that (ii) the VPM will provide accurate seasonal and inter-annual estimates of 
GPP for these tropical, semi-deciduous forests. 

2. Materials and methods 

2.1. Site description 

The study was conducted between July 2005 and June 2008 in a semi-deciduous forest 
located 50 km northeast of Sinop, Mato Grosso, Brazil (11° 24.75′ S: 55° 19.50′ W; 
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423 m above sea level). The area is in a climatic transition between humid tropical forest 
to the north and savanna to the south and east. The forest canopy is on average 25–28 m 
tall with 94 species ha–1 and 35 plant families ha–1 of woody trees and vines ≥10 cm in 
diameter; however, more than 50% of all trees are composed of Protium sagotianum 
Marchland (Burseraceae), Tovomita schomburgkii Planch & Triana (Clusiaceae), 
Brosimum lactescens (S. Moore) C.C. Berg (Moraceae), and Dialium guianense (Aubl.) 
Sandwith (Caesalpiniaceae) (Sanches et al. 2008). The mean basal area of woody plants 
was 22.5 m2 ha−1 and the density was 483 stems ha−1, with 60% of all individuals 
belonging to the 10–20 cm diameter size class (Sanches et al. 2008). The leaf area index 
(LAI) varies from 7–8 m2 m−2 in the wet season to 6–7 m2 m−2 in the dry season (Biudes 
et al. 2013). The soil is a quartzarenic neosol characterized by ~90% sand, low pH (4.2), 
and low fertility (Almeida 2005). The climate is classified as Aw according to Köppen, 
with a 30 year mean annual temperature of 24°C and annual rainfall of 2037 mm, and a 
distinct dry season from May to September (Vourlitis et al. 2008, 2011). 

2.2. Eddy covariance and micrometeorological measurements 

Net ecosystem exchange (NEE) and energy balance were measured using the eddy 
covariance method. Eddy covariance sensors were mounted on a walk-up tower at a 
height of 42 m above ground level or 14–17 m above the forest canopy (Vourlitis et al. 
2011).  The eddy covariance system utilized a  three-dimensional sonic anemometer-
thermometer (CSAT-3, Campbell Scientific, Inc., Logan, UT, USA) to measure the 
mean and fluctuating quantities of wind speed and temperature and an open-path 
infrared gas analyser (LI-7500, LI-COR, Inc. Lincoln, NE, USA) to measure the mean 
and fluctuating quantities of H2O vapour and  CO2 molar density. The infrared gas 
analyser was installed approximately 5 cm downwind of the sonic anemometer to 
minimize sensor separation and at an angle of 20° to allow moisture from rain or dew 
to rapidly roll-off the light-source window. Raw (10 Hz) and average CO2 and H2O 
vapour fluxes data were stored and processed using a solid-state data logger (CR5000, 
Campbell Scientific, Inc., Logan, UT, USA). 

Canopy CO2 storage was determined by quantifying the rate of change of the CO2 

concentration of the air column between the ground surface and the eddy covariance 
sensors (Grace et al. 1996; Vourlitis et al. 2011). Air samples were drawn at 1, 4, 12, 20, 
and 28 m above the ground level using a diaphragm pump and solenoid switching system, 
and the vertical CO2 concentration profile was measured using a closed-path CO2 analyser 
(LI-820, LI-COR, Inc., Lincoln, NE, USA). The gradient measurement system was 
operational for 30% of all the observations, and during system failure canopy CO2 storage 
was quantified from the CO2 concentration measurements made at the top of the tower 
(Hollinger et al. 1994), which did not differ from those derived from the gradient 
measurements (Vourlitis et al. 2011). 

Photosynthetic photon flux density (PPFD) was measured above the canopy (40 m 
above ground level) using a quantum sensor (LI-190SB, LI-COR, Lincoln, NE, USA). 
The air temperature and relative humidity (RH) were measured at the top of the tower 
using a thermohygrometer (HMP-45 C, Vaisala Inc., Helsinki, Finland). 
Micrometeorological sensor output was measured every 30 s using a solid-state data 
logger (CR5000, Campbell Scientific, Inc., Logan, UT, USA) and data were averaged 
over half-hourly intervals. Precipitation data were obtained daily from a manual rainfall 
gauge located 5 km southeast of the eddy flux tower because data obtained at the eddy 
flux tower was periodically unavailable and/or unreliable. These data were highly 
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correlated with data collected on-site, with a mean (±95% CI) linear regression slope of 
0.98 ± 0.18 and y-intercept that was not significantly different from zero (r2 = 0.91; n = 7  
months; Vourlitis et al. 2008, 2011). 

2.3. CO2 flux calculation and data treatment 

Carbon dioxide and energy fluxes were obtained by calculating the covariance between 
the fluctuations in vertical wind speed and fluctuations in virtual temperature, H2O 
vapour, or CO2 molar density following a coordinate rotation of the wind vectors 
(McMillen 1988) and averaged over 30 min time periods. Eddy CO2 flux derived from 
the open-path gas analyser was corrected for simultaneous fluctuations in heat and H2O 
vapour whereas eddy H2O vapour flux was corrected for fluctuations in heat flux (Webb, 
Pearman, and Lenning 1980). 

NEE was calculated as the sum of eddy CO2 flux and canopy CO2 storage. NEE data 
were screened for quality following guidelines established by Ameriflux and Anthoni, 
Law, and Unsworth (1999). Data were rejected when (1) eddy covariance sensors failed or 
were down because of calibration and system maintenance, (2) warming flags were 
generated by the system software indicating measurement and/or processing errors, (3) 
spikes in sonic and/or infrared gas analyser data were excessive, such as during heavy 
rainfall events, (4) abrupt changes in wind speed caused non-stationary conditions, and (5) 
eddy flux data were outside physically and/or biologically meaningful ranges. With 
instrument malfunction, weather variation, and calibration issues, 66–75% of all possible 
CO2 flux data were obtained, and 78–91% of all possible micrometeorological data were 
obtained (Vourlitis et al. 2011). 

GPP was estimated by Equation (1) following the methods described by Wohlfahrt 
et al. (2005): 

GPP ¼ NEE Reco; (1) 

where NEE is the daytime (PPFD > 5 μmol photons m−2 s−1) net ecosystem CO2 

exchange measured from eddy covariance and Reco is an average rate of daytime 
ecosystem respiration. Daytime Reco and GPP were derived using a Michaelis–Menton-
type function (Ruimy et al. 1995; Wohlfahrt et al. 2005) by Equation (2) over 8 day 
intervals (to be consistent with MODIS data acquisition described below): 

e0QPPFDFGPP;satNEE ¼ Reco; (2) 
e0QPPFD þ FGPP;sat 

where ε0 is the apparent quantum yield (μmol CO2 μmol photons−1), QPPFD is the 
measured average 30 min average PPFD (μmol photons m−2 s−1), FGPP,sat is the light-
saturated rate of GPP (μmol CO2 m

−2 s−1), and Reco is the daytime respiration rate that is 
−2 −1estimated as the intercept of Equation (2) where PPFD = 0 μmol photons m s . 

Estimates of Reco derived using these methods compare well to those estimated from 
night-time data (Falge et al. 2001), and minimize problems associated with night-time flux 
loss from low turbulence and errors in objectively selecting a turbulence (i.e. frictional 
velocity) threshold that excludes data measured under inadequate turbulence (Wohlfahrt 
et al. 2005). 
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2.4. Satellite imagery and vegetation indices 

We downloaded the 8 day composite land-surface reflectance data (MOD09A1) from the 
EROS Data Active Archive Center (EDC Daac, http://daac.ornl.gov/cgi-bin/MODIS/ 
GLBVIZ_1_Glb/modis_subset_order_global_col5.pl) based on the geo-location informa-
tion (latitude and longitude) of the eddy covariance flux tower from July 2005 to June 
2008. The MOD09A1 data sets include seven spectral bands, at a spatial resolution of 
500 m, and are corrected for the effects of atmospheric gases, aerosols, and thin cirrus 
clouds (Vermote and Kotchenova 2008). Land-surface reflectance values were averaged 
for the nine pixels covering and surrounding the eddy flux tower, and only pixels with 
highest quality assurance (QA) metrics were used. 

Varying sensor-viewing geometry, cloud presence, aerosols, and bidirectional reflec-
tance can limit the efficacy of reflectance data for assessing spatial–temporal dynamics in 
biophysical processes (Hird and McDermid 2009), and signal extraction techniques are 
often required to improve the signal–noise ratio (Hernance et al. 2007). Thus, we applied 
singular spectrum analysis (SSA) using CatMV software (Golyandina and Osipova 2007), 
which has been shown to be effective for the filtered reconstruction of short, irregularly 
spaced, and noisy time series (Ghil et al. 2002) and for improving the signal–noise ratio of 
the MODIS land-surface reflectance (Zeilhofer et al. 2011). SSA is initiated by the 
embedding of a time series X(t): t = 1,  …, N in a user-defined vector space of dimension 
M, to represent it as a trajectory in the phase space of the hypothetical system that 
generated X(t) (Ghil et al. 2002). Using the Caterpillar method (Golyandina, Nekrutkin, 
and Zhigljavsky 2001), spectral information on the time series is obtained by diagonaliz-
ing the lag-covariance matrix C of X(t). As a result of this decomposition, the M 
eigenvectors λk of the lag-covariance matrix C are called temporal empirical orthogonal 
functions (EOFs). The eigenvalues λk of C account for the partial variance in the direction, 
and the sum of the eigenvalues gives the total variance of the original time series X(t). To 
reconstruct a filtered noise-reduced time series, eigenvalues that represent the signal 
(trend, periodicity) are selected. The Caterpillar method for time series with missing 
data was conducted using the CatMV software (Golyandina and Osipova 2007). For 
SSA filtering, a 1 year time window length was used for image decomposition (24 
observations), with a threshold of 12 gaps (6 months) at maximum. Five EOFs (EVI: 
numbers 1, 8, 9, 23, and 24) were then applied for reconstruction. Comprehensive 
descriptions of SSA and the Caterpillar method are given in Golyandina, Nekrutkin, 
and Zhigljavsky (2001) and Golyandina and Osipova (2007). 

Land-surface reflectance values from blue (ρblue), red (ρred), near-infrared (ρnir), and 
shortwave infrared (ρswir) were used to calculate the enhanced vegetation index (EVI) 
(Huete et al. 1997) and the land surface water index (LSWI) (Xiao et al. 2002; Xiao,  
Hollinger, et al. 2004). EVI has been used to characterize the seasonal variation of 
temperate (Xiao, Hollinger, et al. 2004a, 200b) and tropical forest (Xiao et al. 2005; 
Vourlitis et al. 2011) CO2 exchange, and is superior to other indices for reducing 
atmospheric influences and characterizing dense vegetation (Huete et al. 2002), whereas 
the LSWI has been used to determine the potential for water stress in tropical forests by 
the leaf water content (Xiao et al. 2005). EVI utilizes red (ρred) and near-infrared bands 
(ρnir), and includes the blue band for atmospheric correction (Equation (3)) to account 
for residual atmospheric contamination (e.g. aerosols), variable soil, and canopy back-
ground reflectance (Huete et al. 1997), which is important in the Amazon Basin, 
particularly during the dry season, when smoke from biomass burning injects large 
amounts of particulates into the atmosphere: 

http://daac.ornl.gov/cgi-bin/MODIS/GLBVIZ_1_Glb/modis_subset_order_global_col5.pl
http://daac.ornl.gov/cgi-bin/MODIS/GLBVIZ_1_Glb/modis_subset_order_global_col5.pl
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EVI ¼ 2:5 
ρnir ρred : (3)

ρnir þ 6ρblue 7:5ρred þ 1 

The shortwave infrared spectral band (ρswir) is sensitive to vegetation water content and 
soil moisture, and a combination of nir and swir bands have been used to derive the LSWI 
(Equation (4)): 

ρnir ρswirLSWI ¼ : (4)
ρnir þ ρswir 

The swir absorption increases and swir reflectance decreases as leaf liquid water content 
increases or soil moisture increases, resulting in an increase of LSWI (Xaio et al. 2005). 

2.5. VPM and parameter estimation 

The VPM proposed by Xiao, Hollinger, et al. (2004), Xiao, Zhang, et al. (2004) is based 
on the concept that leaves and canopy are composed of photosynthetically active vegeta-
tion (PAV, mostly chloroplast) and non-photosynthetic vegetation (mostly senescent 
foliage, branches, and stems). The fraction of absorbed photosynthetically active radiation 
(FPAR) is partitioned into the fraction absorbed by chlorophyll (FPARchl) and the fraction 
absorbed by NPV within the canopy (FPARNPV). The predicted GPP (gC m−2 day−1) can 
be described by Equation (5) as follows: 

GPP ¼ eg FPARchl PPFD; (5) 

where εg is the light-use efficiency (gC molPPFD−1) and FPARchl (Equation (6)) is the 
fraction of PPFD absorbed by chlorophyll. FPARchl is assumed to be a linear function of 
EVI (Xiao, Hollinger, et al. 2004; Xiao, Zhang, et al. 2004; Wang, Xiao, and Yan 2010); 
and following Xaio et al. (2005), who used the VPM to estimate the GPP of Amazonian 
forest near Santarem, Pará, we set the value of α = 1.0. 

FPARchl ¼ αEVI: (6) 

εg (Equation (5)) is often considered to be a constant value that is parameterized based on 
prior knowledge from ground-based measurement campaigns (Wu et al. 2010). However, 
εg can vary as a function of meteorology and surface water availability, and previous 
research indicates that variations in εg may be large in tropical semi-deciduous forests, 
especially in response to phenology and water availability (Vourlitis et al. 2011). Variation 
in εg has been modelled as a function of a maximum value (ε0) and scalar functions 
(Equation (7)): 

eg ¼ e0TscalarWscalarPscalar; (7) 

where Tscalar, Wscalar, and Pscalar are the down-regulation scalars, ranging between 0 and 1, 
for the effects of temperature, water, and leaf phenology on light-use efficiency of vegeta-
tion, respectively, and ε0 is the maximum apparent light-use efficiency estimated from the 
Michaelis–Menten function (Equation (2)) (Running et al. 2004; Xiao, Hollinger, et al. 
2004; Xiao, Zhang, et al. 2004; Wu et al. 2010). We used a value of 0.54 gC molPPFD−1 for 
ε0 to be consistent with that used by Xiao et al. (2005) for Amazonian forest; however, this 
value was comparable to the value of ε0 that was estimated from our eddy covariance values 
of GPP. 
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We used scalar functions normally applied to these models to test their performance 
for our tropical semi-deciduous forest. Tscalar (Equation (8)) was developed for the 
Terrestrial Ecosystem Model (TEM) (Raich et al. 1991; Wu et al. 2010), 

ðT TminÞðT TmaxÞ Tscalar ¼ � �2 ; (8) 
½�ðT TminÞðT TmaxÞ T Topt 

where T is the air temperature at each time step (°C), and Tmin, Tmax, and Topt are the 
minimum, maximum, and optimal temperature for photosynthetic activity (°C), respec-
tively. If air temperature falls below Tmin, Tscalar is set to zero. For tropical forest, Tmin was 
set to 2°C, Topt = 28°C, and Tmax = 40°C, as reported by Doughty and Goulden (2008) 
and Vourlitis et al. (2011) and implemented in TEM (Raich et al. 1991; Wu et al. 2010). 
Wscalar (Equation (9)) represents the effect of water on plant photosynthesis, and has been 
estimated as a function of soil moisture, vapour pressure deficit (VPD), and, for our 
purposes, the satellite-derived water index (LSWI) (Running et al. 2000, Xiao, Hollinger, 
et al. 2004; Xiao, Zhang, et al. 2004, 2005): 

1 þ LSWI 
Wscalar ¼ ; (9)

1 þ LSWImax 

where LSWImax is the maximum LSWI, which depends on the optical sensor and the time 
series of image data (Xiao, Hollinger, et al. 2004), and here, the maximum LSWI was 
observed during the early wet season and was equal to 0.38. Pscalar (Equation (10)) accounts 
for the effect of leaf phenology (leaf age) on canopy photosynthesis, and relies on LSWI to 
identify the green-up and senescence phase (Xiao, Zhang, et al. 2004; Wu et al. 2010). For a 
canopy that is dominated by leaves with a life expectancy of <1 year (e.g. deciduous trees), 
Pscalar is calculated as a linear function of LSWI at two different phases: 

1 þ LSWI 
Pscalar ¼ ; (10)

2 

when leaves are expanding, and Pscalar = 1 after leaf expansion (Xiao, Zhang, et al. 2004; 
Wu et al. 2010). 

3. Results and discussion 

3.1. Seasonal variations in meteorology 

Meteorological conditions varied substantially over the study period, with drier and warmer 
conditions during 2005–2006, wetter and warmer conditions during 2006–2007, and drier and 
cooler conditions during 2007–2008 (Vourlitis et al. 2011). Seasonal variations in air tem-
perature were consistent from year to year, although air temperature was higher in 2005 
(Figure 1(a)). Air temperature was generally lowest during the dry season, when the incursion 
of cold fronts to the southern portion of the Amazon Basin is more common (Machado et al. 
2004), increased during the dry–wet season transition in August–September, and reached a 
peak during the early wet season in October. Average daily air temperature in October 2005 
was approximately 2.5°C and 3°C higher than in 2006 and 2007, respectively, and this period 
is of particular interest because of intense drought reported throughout the southern Amazon 
Basin (Marengo et al. 2008). Wet season temperatures were more variable; however, 
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Figure 1. (a) Average air temperature, (b) photosynthetic photon flux density (PPFD), and (c) 
relative humidity calculated over 8 week intervals for the 2005–2006 (solid circles, solid lines), 
2006–2007 (open circles, dotted lines), and 2007–2008 (inverted triangles, dashed lines) field 
seasons. The vertical shaded portions in each panel depict the dry season. 

temperatures were the highest in 2005–2006 and the lowest in 2007–2008 until February, and 
after that, air temperature for 2006–2007 was higher than that for the other years (Figure 1(a)). 

PPFD was highest during the dry season, when cloud cover was at a minimum, and 
lowest during the wet season as cloud cover increased (Figure 2(b)). Frequent cloud cover 
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Figure 2. The (a) average enhanced vegetation index (EVI) and (b) land surface water index 
(LSWI) calculated over 8 week intervals for the 2005–2006 (solid circles, solid lines), 2006–2007 
(open circles, dotted lines), and 2007–2008 (inverted triangles, dashed lines) field seasons. The 
vertical shaded portions in each panel depict the dry season. 

also caused wet season PPFD values to be much more variable, and the lowest value of 
PPFD (,115 μmol photons m−2 s−1) was observed in December 2005, which had one of 
the highest rainfall totals observed during the study period (Vourlitis et al. 2011). 

Seasonal variations in RH were much less variable than temperature and PPFD over 
the study period (Figure 1(c)). The lowest values of RH (i.e. 50–60%) were observed 
during the dry season in late-August, whereas the peak values (80–90%) were observed in 
February during the peak of the wet season (Figure 1(c)). 

3.2. Seasonal variations in the EVI and LSWI 

Seasonal variations in the EVI were consistent from year to year, with low values during 
the dry season in May–September and peak values during the dry–wet season transition in 
November (Figure 2(a)). The increase in the EVI during the dry–wet season transition is 
consistent with the development of new leaves, increase in LAI, and increase in leaf 
nutrient concentration that typically occur as the rainy season ensues (Xiao et al. 2005; 
Asner and Martin 2008; Sanches et al. 2008). This pattern is more closely related to that 



of savanna than of Amazonian forest (Ratana, Huete, and Ferreira 2005; Samanta et al. 
2012), and reflects the importance of soil water availability, rather than radiation, in 
the seasonal phenology of leaf production in the semi-deciduous forest of the 
rainforest–savanna transition zone. In contrast, the LSWI displayed peaks in the dry 
season and a seasonal minimum during the wet season (February) and the wet–dry season 
transition in March–April (Figure 2(b)). The high values of LSWI during the dry season 
have been attributed to an increase in the proportion of young leaves, which have higher 
water content than older, senescent leaves (Roberts et al. 1998) and a high water-
equivalent thickness of the upper canopy supplied by the deep root system (Xiao et al. 
2005). However, the temporal trend in the LSWI was positively correlated with seasonal 
variations in leaf litter production (Figure 3(a)) and negatively correlated with seasonal 
variations in precipitation (Figure 3(b)) and soil water content (Figure 3(c)). Thus, as a 
land-surface water availability index, the LSWI appears to be negatively related with 
various water availability measures such as rainfall, soil water content, and RH (r = –0.68; 
p < 0.001; Figure 1(c)). 
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Figure 3. (a) Average (±se, n = 10) monthly leaf litter production (left-hand axis; open diamonds, 
solid line) and the land surface water index (LSWI; right-hand axis; solid circles, solid lines), (b) 
total monthly rainfall (left-hand axis; open circles, solid line) and the LSWI (right-hand axis; solid 
circles, solid lines), and (c) average (±sd; n = 2) soil water content in the upper 25 cm soil layer (left-
hand axis; open circles, solid lines) and the LSWI (right-hand axis; solid circles, solid lines) during 
the study period. The vertical shaded portions in each panel depict the dry season. Also shown are 
the results from cross-correlation analysis (correlation coefficient (r) and the probability of a type-I 
error (p value)) between the LSWI and leaf litter production (a), precipitation (b), and soil water 
content (c) when the LSWI time series is either synchronized with the other time series (Lag (0)) or 
is lagged by 1 month with respect to the other time series (Lag (1)). Data for leaf litter production 
are from Sanches et al. (2008) and data for soil water content are from Vourlitis et al. (2008). 
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Figure 4. Average gross primary production (GPP) from eddy covariance measurements and 
models (Equation (2)) calculated over 8 week intervals for the 2005–2006 (solid circles, solid 
lines), 2006–2007 (open circles, dotted lines), and 2007–2008 (inverted triangles, dashed lines) field 
seasons. The vertical shaded portions in each panel depict the dry season. 

Rates of GPP estimated from the eddy covariance data and the Michaelis–Menton 
light-use model (Equation (2)) exhibited lower values during the dry season and higher 
values during the wet season (Figure 4). These trends are coincident with seasonal 
variations in rainfall and soil water availability, and strong direct positive relationships 
between plant water potential and photosynthesis have been well-documented for tropical 
semi-deciduous forests (Miranda et al. 2005; Sendall, Vourlitis, and Lobo 2009) and 
savanna (Vourlitis and da Rocha 2010). However, variations in rainfall also indirectly 
affect GPP by affecting LAI (Poveda et al. 2001; Biudes et al. 2013), as was observed 
with the EVI (Figure 2(a); Vourlitis et al. 2011), nutrient uptake and availability (Myers 
et al. 1994), and VPD limitations on CO2 uptake (Malhi et al. 1998; Araujo et al. 2002; 
Vourlitis et al. 2004, 2005, 2011). 

3.3. Analysis of the VPM 

Error analyses indicated that the standard VPM (Equations (5)–(10)) performed poorly in 
reconstructing the seasonal variations in GPP estimated from eddy covariance (Figure 5; 
Table 1). The standard VPM had the highest root mean square (RMSE) and mean absolute 
(MAE) errors, the lowest values (0.25–0.29) of Wilmont’s index of agreement (d), and was 
not significantly correlated with the measured GPP (Table 1). The largest discrepancy 
between the measured and VPM-modelled GPP occurred during the dry seasons, when the 
modelled GPP was on average twice the measured values (Figure 5). Over each year, the 
standard VPM significantly overestimated average GPP by nearly 1.5 times during 2005– 
2006 and 2006–2007; however, differences between the VPM-derived GPP and that esti-
mated from eddy covariance were not statistically significant during 2007–2008 (Table 2). 

https://0.25�0.29
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Figure 5. Average GPP derived from eddy covariance measurements (solid circles, solid lines) and 
the standard Vegetation Photosynthesis Model (VPM; open circles, dotted lines) calculated over 8 
week intervals for the 2005–2006 (top panel), 2006–2007 (middle panel), and 2007–2008 (bottom 
panel) field seasons. The vertical shaded portions in each panel depict the dry season. 

The reason for the discrepancy between the standard VPM and the measured values 
appeared to be due to the seasonal behaviour of the water availability scalar (Wscalar). 
Seasonal variations in the light-use efficiency (εg) exhibited minima during the dry season 
and maxima during the wet season (Figure 6(a)), which is consistent with other studies, 
highlighting the importance of rainfall and water availability on photosynthetic light-use 
efficiency (Miranda et al. 2005; Priante et al. 2004; Sendall, Vourlitis, and Lobo 2009; 
Vourlitis et al. 2001, 2004, 2005, 2011). The temperature scalar (Tscalar) would cause εg to 
increase during the wet–dry season transition (Figure 6(b)) as temperature increases and 
decrease during the wet season when temperature declines in response to frequent 
cloudiness (Figure 1(a)). The 28°C temperature optimum for canopy photosynthesis 
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Table 1. Error analysis of the gross primary production (GPP) estimates derived from the light-use 
efficiency model with different parameterizations of Wscalar compared to GPP estimated from eddy 
covariance. Error statistics include the root mean square (RMSE) and mean absolute (MAE) errors, 
Wilmont’s statistic (d), the correlation coefficient (r) and the probability (p) of a statistically 
significant correlation, the intercept of the linear regression and the probability that the intercept 
is significantly different from zero (p ≠ 0), and the slope of the linear regression and the probability 
that the slope is significantly different from unity (p ≠ 1). 

Intercept 
RMSE MAE (p ≠ 0) 

Period Model (gC m−2 day−1) d r (p) (gC m−2 day−1) Slope (p ≠ 1) 

2005–2006 Standard 5.11 4.23 0.29 −0.21 (NS) 13.32 (<0.001) −0.38 (<0.001) 
RH 2.54 1.88 0.51 0.17 (NS) 6.16 (<0.001) 0.21 (<0.001) 
PPFD 1.92 1.50 0.50 0.21 (NS) 6.91 (<0.001) 0.13 (<0.001) 
RH + PPFD 1.54 1.28 0.62 0.49 (<0.001) 5.75 (<0.001) 0.25 (<0.001) 

2006–2007 Standard 4.53 3.90 0.25 −0.30 (NS) 15.11 (<0.001) −0.42 (<0.001) 
RH 3.55 2.70 0.42 0.40 (<0.005) 4.20 (<0.05) 0.76 (NS) 
PPFD 1.91 1.59 0.43 0.08 (NS) 7.22 (<0.001) 0.05 (<0.001) 
RH + PPFD 1.57 1.25 0.66 0.44 (<0.005) 4.98 (<0.001) 0.37 (<0.001) 

2007–2008 Standard 3.63 3.00 0.25 −0.21 (NS) 13.05 (<0.001) −0.41 (<0.001) 
RH 2.01 1.70 0.62 0.54 (<0.005) 1.97 (NS) 0.61 (<0.05) 
PPFD 1.56 1.19 0.61 0.35 (<0.05) 6.51 (<0.001) 0.28 (<0.001) 
RH + PPFD 1.28 0.97 0.76 0.60 (<0.001) 3.55 (<0.01) 0.57 (<0.005) 

3 year Standard 4.54 3.78 0.26 −0.22 (<0.05) 13.61 (<0.001) −0.37 (<0.001) 
RH 2.84 2.13 0.50 0.32 (<0.001) 4.31 (<0.001) 0.54 (<0.005) 
PPFD 1.83 1.45 0.54 0.24 (<0.01) 6.74 (<0.001) 0.16 (<0.001) 
RH + PPFD 1.48 1.18 0.70 0.53 (<0.001) 4.88 (<0.001) 0.39 (<0.001) 

Table 2. Mean (±95% CI) gross primary production from eddy covariance measurements (mea-
sured) and the light-use efficiency model using the standard Wscalar and those estimated from relative 
humidity (RH), photosynthetic photon flux density (PPFD), and a combined RH + PPFD model. 
Coefficients with an asterisk are not significantly different (p < 0.05) from the value estimated from 
eddy covariance (EC-Estimated). 

2005–2006 2006–2007 2007–2008 

EC-Estimated 7.33 ± 0.51 8.25 ± 0.45 8.57 ± 0.52 
Standard 10.52 ± 0.87 11.63 ± 0.65 8.88 ± 0.77* 
RH 7.77 ± 0.58* 10.26 ± 0.67 7.15 ± 0.45 
PPFD 7.60 ± 0.31* 7.59 ± 0.28* 8.69 ± 0.31* 
RH + PPFD 7.60 ± 0.27* 7.94 ± 0.37* 7.85 ± 0.75* 

(Topt) and the behaviour of Tscalar are consistent with those reported for this and other 
tropical forests (Doughty and Goulden 2008; Vourlitis et al. 2011). However, because 
Wscalar is driven solely by variations in the LSWI (Equation (9)), which is negatively 
related to various water availability measures such as rainfall, soil water content, and RH 
(Figure 3), the standard version of Wscalar estimates little control of water availability on εg 

over the annual cycle (Figure 6(c)), although drought-induced declines in εg are well 
known from these seasonal forests (Miranda et al. 2005; Priante et al. 2004; Sendall, 
Vourlitis, and Lobo 2009; Vourlitis et al. 2001, 2004, 2005, 2011). In fact, water stress 
according to the standard Wscalar function is estimated to be relatively higher during the 
wet season than during the dry season (Figure 6(c)). Thus, in its current configuration, the 
VPM is incapable of reproducing GPP in these highly seasonal forests. 
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Figure 6. (a) Average light-use efficiency (εg) estimated from eddy covariance and Equation (2), 
(b) temperature scalar (Tscalar), and (c) the water availability scalar (Wscalar) from the standard VPM 
model calculated over 8 week intervals for the 2005–2006 (solid circles, solid lines), 2006–2007 
(open circles, dotted lines), and 2007–2008 (inverted triangles, dashed lines) field seasons. The 
vertical shaded portions in each panel depict the dry season. 

Following Vourlitis et al. (2011), new estimates of Wscalar were derived for this 
seasonal forest using measured values of RH and PPFD (Figure 7). These variables 
were used because εg has been observed to increase as a function of humidity (Vourlitis 
et al. 2011) and the potential for εg to decline as the average PPFD increases (Boardman 
1977). We estimated a new Wscalar as a function of RH alone, PPFD alone, and RH and 
PPFD combined (Figure 8). The exponential RH function (Figure 7) ranged from 0.2 to 
1.1 and followed a consistent seasonal trend from year to year with the lowest values in 
the dry season and dry–wet season transition and the highest values during 
December–April in the wet season (Figure 8(a)). The exponential PPFD function 



      

      

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 

RH 

y = EXP(0.032(RH–84.995)); r2 = 0.38; p < 0.0001 

W
sc

al
ar

 50 60 70 80 90 

RH (%) 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 
200 300 400 500 600 

–1) 

PPFD 

100 

y = EXP(0.0035(PPFD–325.30)); r2 = 0.81; p < 0.0001 

PPFD (μmol photons m–2 s 

D
ow

nl
oa

de
d 

by
 [

U
ta

h 
St

at
e 

U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
1:

57
 1

9 
Fe

br
ua

ry
 2

01
4 

1554 M.S. Biudes et al. 

Figure 7. New Wscalar functions based on non-linear trends with relative humidity (top panel) and 
photosynthetic photon flux density (bottom panel). Estimates of Wscalar were derived by combining 
Equations (5)–(7) and solving for Wscalar. 

(Figure 7) had a larger dynamic range than the RH function (0.4–1.9), and was more 
variable from year to year, reflecting the inter-annual variability in PPFD (Figure 8(b)). 
However, the PPFD function also exhibited lower values in the dry season and the highest 
values in the wet season. The combined function (RH + PPFD), which was a double 
exponential function, was almost identical to the PPFD-only function; however, the scalar 
values were slightly lower for the combined function (Figure 8(c)). 

Error analyses indicated that the VPM with the new Wscalar functions performed 
significantly better than the standard model (Table 1). On average, the RMSE and MAE 
for the RH model were 50% of the standard model whereas the PPFD and RH + PPFD 
models had RMSE and MAE values that were 25–30% of the standard model (Table 1). 
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Figure 8. Time series of the new Wscalar functions based on relative humidity (a), photosynthetic 
photon flux density (b), and relative humidity and photosynthetic photon flux density combined (c), 
calculated over 8 week intervals for the 2005–2006 (solid circles, solid lines), 2006–2007 (open 
circles, dotted lines), and 2007–2008 (inverted triangles, dashed lines) field seasons. The vertical 
shaded portions in each panel depict the dry season. 

Wilmont’s index of agreement (d) was on average two times higher for the revised VPMs 
than for the standard model, and all of the correlations between the measured and 
modelled GPP values were positive and statistically significant, with the exception of 
the PPFD model during 2005–2006 (Table 1). Linear regression results with the modelled 
GPP as the dependent variable and measured GPP as the independent variable revealed 
that the RH model had substantially lower values for the y-intercept and higher values for 
the slope, indicating that modelled 8 week averages were closer to the measured values. 
The use of humidity as a sole variable for estimating the potential for water stress (actually 
VPD) is not without precedent, and forms the basis of adjusting the MODIS-derived GPP 
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estimates to spatial and temporal variations in water availability on a global scale (Mu 
et al. 2007). 

In general, the PPFD and combined models had lower dynamic range than the RH 
model (Figure 9), and as a result, the y-intercept values were higher, and always sig-
nificantly different from zero, and the slopes were lower and always significantly different 
from 1 (Table 1). However, the index of agreement (d) was higher for the PPFD and 
combined models, indicating a better fit to the measured values, which was also apparent 
when comparing the time series (Figure 9). In general, the RH model tended to signifi-
cantly overestimate GPP during 2006–2007 and significantly underestimate GPP during 
2007–2008 (Figure 9; Table 2). In contrast, the annual averages derived from the PPFD 

Figure 9. Average GPP derived from eddy covariance measurements (solid circles, solid lines) and 
the Vegetation Photosynthesis Model (VPM) with the new Wscalar function (open circles, dotted 
lines) based on relative humidity only (left-hand panels), photosynthetic photon flux density only 
(centre panels), and relative humidity and photosynthetic photon flux density combined (right-hand 
panels) calculated over 8 week intervals for the 2005–2006 (top panels), 2006–2007 (middle 
panels), and 2007–2008 (bottom panels) field seasons. The vertical shaded portions in each panel 
depict the dry season. 
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and combined models were not statistically different from the measured values for each 
year of the study period. 

4. Conclusions 

Estimates of tropical ecosystem GPP are required to quantify current and future rates of CO2 

uptake in response to land cover and climate change. Satellite data, and the spectral vegetation 
indices that are derived from them, are sensitive to temporal and spatial variations in LAI, 
phenology, and leaf chlorophyll content (Ratana, Huete, and Ferreira 2005; Huete  et al.  2006; 
Samanta et al. 2012; Silva et al. 2013), but are limited by cloud cover during the wet season and 
biomass burning during the dry season when atmospheric clarity is impaired (Hird and 
McDermid 2009; Samanta et al. 2010; Zeilhofer et al. 2011). Satellite-based models are key 
tools for providing these estimates in remote and spatially extensive and complex areas. Many 
of these models use light-use efficiency approaches to estimate GPP as a function of the 
maximum light-use efficiency (ε0), FPAR (i.e. the EVI), and climate; however, these models 
also need realistic scalar functions to deal with climatic limitations (Xiao, Hollinger, et al. 2004; 
Mu et al. 2007; Wu, Chen, and Huang 2011). Here we found that the standard approach for 
estimating potential water limitations to GPP, based on an empirical relationship with LSWI, 
was inadequate for estimating the potential for drought limitations on GPP for a seasonal 
tropical forest in the south-central Amazon Basin. The standard Wscalar was not suitable in part 
because the seasonal pattern of the LSWI was negatively correlated with some of the key 
variables for water availability (precipitation, soil water content, and RH). These results high-
light the importance of variable drivers of phenology (i.e. light and water availability) that 
extend across the Amazon Basin (Ratana, Huete, and Ferreira 2005), and the need to develop 
vegetation indices and/or algorithms for estimating GPP that capture these variable patterns of 
phenology (Silva et al. 2013). Based on previous research in seasonal tropical forest (Vourlitis 
et al. 2011), new functions of the water availability scalar (Wscalar) were derived from time series 
of RH and PPFD to provide estimates of GPP that were significantly more accurate than those 
derived from the standard approach. Variables such as RH (VPD) have been shown to be 
effective for characterizing spatial and temporal patterns of water stress over global scales (Mu 
et al. 2007). Whether these new functions perform equally well in water-stressed and unstressed 
tropical forests needs to be determined, but presumably unstressed ecosystems would have high 
cloud cover and humidity, which would minimize variations in Wscalar, and thus minimize 
variation in GPP to spatial and/or temporal variation in water availability. 
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