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Abstract Brazilian savanna (known as cerrado) has 

highly seasonal variation in rainfall yet trees have 

widely different phenological strategies ranging from 

evergreen to fully deciduous. While qualitative patterns 

of canopy phenology are well-known, few studies have 

quantitatively measured schedules of leaf and branch 

phenology. We measured the leaf and vegetative 

phenology of two widely distributed cerrado tree 

species Vochysia divergens Pohl., an evergreen species, 

and Curatella americana L., a semi-deciduous species, 

over a 1-year period and hypothesized that the dry 

season would represent a trigger for leaf abscission and 

leaf and branch growth. Leaf and branch emergence and 

leaf abscission for the semi-deciduous species were 

coincident with the end and beginning of the dry season, 

respectively, and were significantly correlated with dry 

season meteorology, but with time lags that varied 

depending on the meteorological variable. Leaf and 

branch emergence and leaf abscission for the evergreen 

species were also coincident with the dry season, but 

correlations with meteorological variables were weaker 

and seasonal patterns were more subtle. V. divergens 

leaves also suffered more from herbivory than C. amer-

icana, and there is evidence that herbivory may have 

altered patterns of leaf emergence for V. divergens. 

V. divergens leaves survived longer than C. americana 

leaves, and relative branch growth rates were signifi-

cantly higher for C. americana. While our study was 

limited to only two tree species and 1 year, we 

demonstrated quantitatively that patterns of leaf and 

branch phenology were highly correlated with climatic 

variations. A strategy of leaf emergence and branch 

growth initiation during the dry season likely maxi-

mizes carbon gain by increasing rates of C assimilation 

by plants at the onset of the rainy season. 
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M. Z. Antunes Jr. 

Instituto de Biociências, Universidade Federal de Mato 
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Introduction 

Phenological studies attempt to determine the possible 

consequences of environmental factors on the func-

tional aspects of a species (Lieth 1974; Talora and 

Morellato 2000; Silvério and Lenza 2010). Studies of 

leaf phenology describe properties such as the degree 

of deciduousness, timing of leaf emergence, expan-

sion, and mortality, and leaf longevity (Kikuzawa 

1995). Variations in leaf phenology can be regarded as 

strategies to maximize survival and productivity 

(Rossato and Kolb 2009), since plant carbon balance 

and growth are closely related to patterns of leaf 

emergence and abscission and leaf longevity (Reich 

1995). Similarly, vegetative phenology studies focus 

on patterns of branch expansion and mortality, and are 

essential for the understanding patterns of tree growth, 

water transport, and net primary productivity (Reich 

1995; Negi 2006; Rossato and Franco 2008). 

In Brazilian savanna (also known as cerrado), for 

example, numerous studies have qualitatively 

assessed leaf phenological patterns with visual assess-

ments of the overall change in the crown appearance 

(Mantovani and Martins 1988; Batalha et al. 1997; 

Batalha and Mantovani 2000; Bulhão and Figueiredo 

2002; Lenza and Klink 2006; Munhoz and Felfili 

2007; Conceição et al. 2007; Rossato and Franco 

2008; Pirani et al. 2009; Silvério and Lenza 2010). 

However, there is limited information about the 

average lifespan of leaves and how leaf emergence 

and abscission are related to environmental character-

istics (Damascos et al. 2005; Lenza 2005). These 

studies are important since they can identify pheno-

phases, or developmental phases associated with the 

seasonal dynamics of a given species, that are critical 

for understanding plant ecophysiological responses to 

changing environmental conditions. 

We quantified the leaf and branch phenological 

patterns of two widespread tree species of the Brazil-

ian cerrado, Vochysia divergens Pohl and Curatella 

americana L. (Pott and Pott 1994; Lorenzi 2002; Sano 

et al. 2008). Both species have been found in widely 

different hydrological regimes ranging from seasonal 

flooding to severe soil water deficit, highlighting their 

physiological plasticity (Parolin et al. 2010; Dalmolin 

et al. 2012; 2013; Dalmagro et al. 2013; 2014); 

however, there are no studies that address the quan-

titative phenology of these species. Given the impor-

tance of phenological traits in plant growth and 

survival (Negi 2006; Rossato and Franco 2008), it is 

important to determine how these traits vary in 

response to seasonal variations in climate. Thus, the 

objectives of this study were to quantify patterns of 

leaf and branch phenology of V. divergens and 

C. americana and determine how these patterns vary 

in response to seasonal variations in climate. Seasonal 

variations in climate, photoperiod, and/or resource 

availability have been found to be important triggers 

for leaf and branch phenology in a wide variety of tree 

species (Reich and Borchert 1984; Borchert 1996; 

Gordo and Sanz 2009; Silvério and Lenza 2010; 

Nanda et al. 2014). In Brazilian savanna and tropical 

dry forest, soil water deficits and/or high evaporative 

demand that develop during the dry season may 

stimulate litter production, reproduction, and leaf 

development and growth (Borchert 1996; Sanches 

et al. 2008; Nanda et al. 2014). Thus, we hypothesized 

that seasonal reductions in rainfall would represent a 

trigger for leaf emergence and abscission and branch 

growth as has been qualitatively described for other 

cerrado woodlands (Mantovani and Martins 1988; 

Lenza and Klink 2006; Silvério and Lenza 2010). 

Materials and methods 

Site and species descriptions 

The study was conducted in camp sujo (dirty field) 

cerrado located at the Miranda Farm (1584305300S and 

5680401800W) near the city of Cuiabá, Mato Grosso, 

Brazil. Campo sujo cerrado vegetation consists of a 

relatively continuous layer of perennial grasses and a 

discontinuous layer of small trees and shrubs (Eiten 

1972). The study site is on flat terrain with an average 

elevation of 157 m. The climate, according to Köppen 

classification, is Aw (Antunes-Junior et al. 2011), and 

the long-term (30 year average) mean annual temper-

ature and rainfall are 26.5 �C and 1,420 mm, respec-

tively (Vourlitis and da Rocha 2011). There is a period 

of extensive and prolonged seasonal drought that 

begins in May and ends in September, when monthly 

evapotranspiration exceeds rainfall by on average a 
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factor of 10 (Antunes-Junior et al. 2011; Vourlitis and 

da Rocha 2011). The regional soil type is a rocky, 

dystrophic red–yellow latosol locally known as a Solo 

Concrecionário Distrófico (Radambrasil 1982) with 

low pH, extractable cations and P, and soil organic 

matter content (Vourlitis et al. 2013). 

Curatella americana L. (commonly known as Lixe-

ira) is a tree that is native to cerrado (Lorenzi 2002). It 

has an upright growth habit that typically reaches a 

height of 6–10 m, and is described as semi-deciduous, 

with large leathery leaves (Pott and Pott 1994). Vochysia 

divergens Pohl. (commonly known as Cambara) is an 

evergreen tree that is native to flooded lowland regions 

of the Amazon Basin. Cambara has an upright growth 

habit that can reach a height of 15–20 m (Pott and Pott 

1994). Both species have a wide distribution throughout 

the savanna region of Mato Grosso, and can be found in 

a variety of cerrado types, including woodlands (cerrado 

sensu stricto), upland forests (cerradão), riparian 

forests, and grasslands (Santos et al. 2006; Vourlitis  

et al. 2011, 2013; Dalmagro  et  al.  2014). 

Field measurements 

Microclimatic variables were measured using an 

automatic weather station that was installed on a 

15-m-tall micrometeorological tower. Air temperature 

and relative humidity were measured using a thermo-

hygrometer (HMP 45AC; Vaisala, Inc., Helsinki, 

Finland). Incident photosynthetic active radiation 

(PAR) was measured using quantum sensor (LI-

190SB-L; LI-COR Biosciences, Inc., Lincoln, NE, 

USA). Precipitation was measured using a tipping-

bucket rainfall gage (TR-525 M; Texas Electronics, 

Inc., Dallas, TX, USA). Measurements were made 

every 30 s and stored as 30 min averages using a 

datalogger (CR1000, Campbell Scientific, Inc., 

Logan, UT, USA). The vapor pressure deficit of air 

(VPD) was calculated as the difference between the 

saturated vapor pressure (es) and the actual vapor 

pressure (e) estimated from the air temperature and 

relative humidity data (Antunes-Junior et al. 2011). 

Ten adult trees, five of C. americana and five of 

V. divergens, were randomly selected in June 2010 for 

the analysis of leaf phenology. On each individual, 16 

branches were randomly selected and tagged, and on 

each branch, all of the leaves were marked with 

colored tape. Between July 2010 and June 2011, each 

tree was visited on a weekly basis, and on each branch, 

the number of new leaves or leaf buds that emerged 

was counted and marked with colored tape, and all of 

the previously marked leaves that were still attached to 

the branch or fallen were counted. These measure-

ments allowed for the determination of leaf emer-

gence, abscission, and lifespan. 

Leaf and branch growth rates were determined 

weekly on ten of the marked branches on each 

individual. All new leaves on these branches were 

measured weekly for length and width using a digital 

caliper. Branch growth rates were quantified by 

measuring the change in branch length each week. 

Data analysis 

The one-sided leaf area (LA) was calculated as the 

product of leaf length and maximum leaf width, which 

were measured weekly for each species. Estimates of 

LA derived from the leaf length and width measure-

ments were calibrated with direct measurements of LA 

made with a portable leaf area meter (CI-202, CID, Inc., 

Camas, WA, USA). Linear regression analyses 

revealed that estimates of LA derived from leaf width 

and length measurements were highly correlated with 

the direct measurements of LA (V. divergens: 

LAmeasured = 1.34 9 LAestimated ? 0.709, R2 = 0.99; 

C. americana: LAmeasured = 1.29 9 LAestimated ? 

2.243, R2 = 0.92; n = 250 measurements for both 

species). 

Variations in leaf area over time were modeled 

using a simple logistic equation (Radford 1967), 

�ktLA ¼ a=1 þ bexp ; ð1Þ 

where t is the leaf age and a, b, and k are model 

coefficients calculated using the Solver function for 

Microsoft Excel. Coefficients derived from this model 

were used to calculate leaf absolute (AGRL) growth 

rates; 

�kt �ktAGRL ¼ abkexp =1 þ bexp : ð2Þ:Þ 

Leaf relative growth rates (RGRL) = AGRL/LA 

(Radford 1967). AGRL and RGRL were analyzed only 

for the sigmoidal LA growth curves that had adjust-

ment R2 values [ 0.89. 

The absolute growth rate of branches (AGRB) was 

calculated each week as (L1 - L0)/(t1 - t0), where L1 

is the current branch length and L0 is the branch length 

measured during the previous week (both in cm) 
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divided by elapsed time (t1 - t0). Branch relative 

(RGRB) growth rates were calculated as [LN(L1) -

LN(L0)]/(t1 - t0), where LN(L1) and LN(L0) are the 

natural log of the branch length of the current and 

previous week, receptively and (t1 - t0) is the elapsed 

time. 

The leaf phenology and growth of the branches 

were analyzed using circular statistics, which are used 

to analyze time series for peaks in activity by 

transforming each month of the year into 30� angular 

increments, with the month of January represented as 

08 and 308, February as 318 and 608, and each month 

increasing by a 30� interval thereafter (Rossatto et al. 

2009). Rayleigh’s (z) test was used to test the null 

hypothesis that leaf and branch phenology were 

evenly distributed throughout the year. The life span 

of leaves not consumed by herbivores was quantified 

for each species as the time from leaf emergence to 

abscission. 

Mean values of leaf life span, leaf expansion time, 

AGRL and AGRB, and RGRL and RGRB for species 

were statistically compared using bootstrap resam-

pling techniques. This technique calculates the mean 

±95 % confidence intervals (95 % CI) by resampling 

the measured values (with replacement) for 1,000 

iterations, and means with ±95 % confidence inter-

vals that do not overlap are considered to be statisti-

cally significant at a p \ 0.05 (Efron and Tibshirani 

1993). Cross-correlation analysis was used to assess 

for correlations, and the potential for lagged correla-

tions, between leaf or branch phenology and meteo-

rological variables such as mean monthly rainfall, 

PAR, air temperature and the VPD. 

Results 

Seasonal variations in microclimate 

Accumulated rainfall over the study period was 

1,259 mm, which is approximately 160 mm lower 

than the long-term (30 year) average for this area 

(Vourlitis and da Rocha 2011). The distribution of 

rainfall was not uniform over the year, and nearly all of 

the annual rainfall (ca. 77 %) occurred during the 

months of January–March (Fig. 1). The climatological 

dry season, defined as the consecutive months with 

rainfall \ 100 mm/month (Hutyra et al. 2005), 

occurred between the months of July–October 2010 

and April–June 2011. Average monthly values of PAR 

were generally lower during the dry season months of 

July–September and increased during the wet season to 
-2 -1 a peak of 213.6 lmol m s in December (Fig. 1). 

The vapor pressure deficit (VPD) had its highest 

average in September (2.4 kPa) and its lowest average 

in March (0.6 kPa) (Fig. 1). Average air temperature 

increased from a minimum of 23.2 �C  in July  2010 to a  

maximum of 29.8 �C in September 2010 and declined 

thereafter (Fig. 1). 

Leaf phenology 

Leaf abscission and emergence occurred during every 

month for V. divergens and C. americana, but both 

emergence (Fig. 2a) and abscission (Fig. 2b) were not 

evenly distributed throughout the year. Leaf emer-

gence for V. divergens reached two peaks, one during 

the dry–wet season transition in October 2010 and 

another larger peak during the wet–dry season tran-

sition in April 2011 (l = 90.258, z = 98.98; 

p \ 0.001; Fig. 2a). These dynamics were positively 

correlated with PAR (Maximum r = 0.61) and tem-

perature (r = 0.64), but with a lag of 5 and 7 months, 

respectively. For C. americana, leaf emergence also 

began during the dry season but was concentrated 

during the month of October (l = 2558, z = 130.89; 

p \ 0.001; Fig. 2a). Peaks in leaf emergence occurred 

5 months prior to the peak in precipitation (r = 0.63) 

and 1 month after the peak in VPD (r = 0.79) but 

were negatively correlated with PAR (r = -0.72) and 

temperature (r = -0.63) with a lag of 1 and 3 months, 

respectively (Table 1). 

Leaf abscission for V divergens increased during 

the dry–wet season transition until February, declined 

slightly in March and April, and reached a peak in May 

2011 (l = 149.308, z = 97.39; p \ 0.001; Fig. 2b), 

and these temporal trends were positively correlated 

(r = 0.59) with rainfall with a lag of 3 months 

(Table 1). Leaf abscission for C. americana increased 

during the wet season in January–March and reached a 

peak in April (l = 106.778, z = 192.35; p \ 0.001) 

during the wet–dry season transition (Fig. 2b). These 

trends were positively correlated with peaks in rainfall 

(r = 0.65), PAR (r = 0.61), and VPD (r = 0.68) but 

with a lag of 1, 4, and 7 months, respectively 

(Table 1). 

Branch emergence showed a distinctive seasonal 

trend for C. americana but not for V. divergens 
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Fig. 1 Total monthly rainfall (white bars) and average monthly 

photosynthetically active radiation (PAR; black circles, solid 

line), atmospheric vapor pressure deficit (VPD; white squares, 

dotted line), and temperature (white circles; solid line) for the 

study site between July 2010 and June 2011. The scales for 

(Fig. 2c). For C. americana, branch emergence 

increased markedly in August, reached a peak in 

October, and declined thereafter with consistently low 

branch emergence during the wet season (Fig. 2b). 

These temporal trends were significantly positively 

correlated with the temperature of the current month 

(r = 0.62) and the VPD of the previous month 

(r = 0.92) and negatively correlated with the PAR 

of the previous month (r = -0.68; Table 1). For 

V. divergens, branch emergence reached a peak in 

July–August and a secondary peak in February, but 

these trends were not significantly correlated with any 

of the measured meteorological variables (Table 1). 

Nearly all of the tagged leaves for both species 

(ca. 85 %) exhibited signs of herbivore damage 

(Table 2), primarily from grasshoppers, and there 

were distinct seasonal patterns in herbivory for both 

species (Fig. 2d). Herbivore damage of V. divergens 

leaves was intense, with over 70 % of all tagged 

leaves experiencing severe leaf damage (Table 2). 

Herbivory increased during the dry season and 

reached a peak in August, but rates remained high 

([18 %) throughout the dry–wet season transition 

until November. Interestingly, herbivory was not 

significantly correlated with leaf abscission; how-

ever, leaf emergence was positively correlated with 

herbivory (r = 0.61; p \ 0.05) but with an 8-month 

rainfall and PAR are displayed on the left-hand axis, and the 

scales for VPD and temperature are displayed in the right-hand 

axis. The shaded portion displays the duration of the wet season, 

defined as the number of consecutive months with a rain-

fall [ 100 mm/month 

lag between the period of peak herbivory and peak 

leaf emergence. Herbivore damage was less intense 

for C. americana leaves, with slightly more than half 

of the tagged leaves experiencing mild damage and 

approximately 25 % of leaves experiencing severe 

damage (Table 2). Herbivory increased during the 

dry–wet season transition and reached peaks in 

October and in February (Fig. 2d). Herbivory was 

not significantly correlated with leaf emergence or 

abscission for C. americana. 

Leaf and branch growth rates 

Although differences between species were observed 

for the periods of peak leaf emergence and abscission, 

both species exhibited a similar elapsed time in the 

emergence of two consecutive leaves, referred to here 

as the leaf emergence interval (Table 3). Leaf emer-

gence intervals were on average of 29 days over the 

study period; however, significant differences were 

observed between the dry and wet period for both 

species. During the dry season, V. divergens and 

C. americana put out a new leaf on average every 19 

and 13 days, respectively, while during the wet season, 

the average leaf emergence interval was 39 and 53 days 

for V. divergens and C. americana, respectively. Leaf 

area for C. americana was 3 times higher than V. 
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Fig. 2 Total number of 

leaves emerging a and 

abscising b for all marked 

trees and/or branches per 

month, c mean (±1 sd; 

n = 5 trees/species) number 

of branches emerging each 

month, and d the percent 

leaves damaged by 

herbivores each month 

between July 2010 and June 

2011 for Vochysia divergens 

(white circles, dotted line) 

and Curatella americana 

(black circles, solid line). 

The shaded portion displays 

the duration of the wet 

season as defined in Fig. 1 

divergens, but V. divergens leaves had a significantly 

longer life span than C. americana leaves (Table 3). 

The leaf growth dynamics for both species were 

well described by the sigmoidal growth model 

(Eq. 1), with a coefficient of variation (r 2) of  

0.90–0.99 for both V. divergens and C. americana. 

Despite differences in leaf area and longevity, both 

species had similar absolute (AGRL) and relative 

(RGRL) leaf growth rates (Table 3). Absolute rates 

of branch growth (AGRB) were also similar for 

both species, and ranged between 0.046 and 

0.052 cm d -1; however, relative branch growth 

rates (RGRB) were significantly higher for 

C. americana (Table 3). 
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Table 1 Results from cross-correlation analysis of monthly leaf emergence, abscission, and branch growth as a function of total 

monthly precipitation and average monthly photosynthetically active radiation (PAR), vapor pressure deficit (VPD), and air 

temperature 

Precipitation PAR VPD Temperature 

Max r Lag (months) Max r Lag (months) Max r Lag (months) Max r Lag (months) 

C. americana 

Leaf abscission 0.65 1 0.61 4 0.68 7 – – 

Leaf emergence 0.63 -5 -0.72 1 0.79 1 -0.63 3 

Branch growth 0.66 -4 -0.68 1 0.92 1 0.62 0 

V. divergens 

Leaf abscission 0.59 3 – – – – – – 

Leaf emergence – – 0.61 5 – – 0.64 7 

Branch growth – – – – – – – – 

Shown are the maximum cross-correlation coefficient (Max r) and the number of months that a phenology variable preceded 

(negative lag) or followed (positive lag) a given meteorological variable. Cross-correlation coefficients displayed in the table are 

statistically significant (p \ 0.05)–(p [ 0.05) 

Table 2 Estimates of leaf herbivory for Vochysia divergens and Curatella americana over the 1-year field study 

Herbivory category Severity of leaf damage Number of leaves (% of total) 

V. divergens C. americana 

Undamaged 141 (15) 116 (16) 

Mild \50 % of the leaf damaged, leaf remained attached to the stem 94 (10) 366 (51) 

Moderate [50 % of the leaf damaged, leaf remains attached to the stem 41 (4) 48 (7) 

Severe [50 % of the leaf damaged, leaf abscised 663 (71) 182 (26) 

Total 939 712 

Herbivory was classified into three different groups depending on severity of leaf damage. Shown are the total number of leaves and 

the percent of all leaves of each species as a function of each herbivory damage category 

Table 3 Mean (±95 % confidence interval (CI)) leaf emergence interval, lifespan and area, and absolute (AGR) and relative (RGR) 

growth rates for leaves and branches of V. divergens and C. americana from July 2010 to June 2011 

Variable Species 

V. divergens C. americana 

Leaf emergence interval (days) 28.8 ± 5.5 (n = 122)a 29.5 ± 4.9 (n = 248)a 

Leaf lifetime (days) 244.6 ± 8.7 (n = 113)a 199.6 ± 6.8 (n = 208)b 

Leaf area (cm2) 30.2 ± 10.9 (n = 388)a 109.2 ± 6.1 (n = 396)b 

AGRL (cm2 day -1) 0.029 ± 0.016 (n = 19)a 0.030 ± 0.014 (n = 19)a 

RGRL (day -1) 0.0023 ± 0.0008 (n = 19)a 0.0011 ± 0.0004 (n = 19)a 

AGRB (cm day -1) 0.046 ± 0.016 (n = 20)a 0.052 ± 0.010 (n = 20)a 

RGRB (day -1) 0.059 ± 0.017 (n = 20)a 0.105 ± 0.018 (n = 20)b 

Values with different letters for a given variable indicate a statistically significant (p \ 0.05) difference between species based on the 

±95 % CI 

n number of leaves or shoots 
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Discussion 

Our results support the hypothesis that the dry season 

is an important trigger for leaf abscission and leaf and 

branch emergence in V. divergens and C. americana, 

which is consistent with previous observations made 

in seasonal tropical forest and savanna (Reich and 

Borchert 1984; Franco 2002; Franco et al. 2005; 

Rossatto et al. 2009; Silvério and Lenza 2010). 

However, there were substantially different leaf and 

branch phenology patterns in the two cerrado tree 

species, V. divergens and C. americana, studied here. 

For C. americana, a semi-deciduous tree species, 

definitive peaks in leaf emergence and abscission were 

observed, which were closely tied to the onset and end 

of the dry season. These dynamics are broadly 

consistent with many semi-deciduous cerrado tree 

species (Mantovani and Martins 1988; Oliveira and 

Gibbs 2000; Lenza and Klink 2006; Silvério and 

Lenza 2010), trees in seasonal tropical forests (Reich 

and Borchert 1984; Borchert 1996; Nanda et al. 2014), 

trees in African savanna (de Bie et al. 1998), and plants 

in extra-tropical areas such as the Mediterranean Basin 

(Peñuelas et al. 2004) and deserts (Abd El-Ghani 

1997; Ghazanfar 1997) where seasonal variations in 

climate are large. Leaf abscission at the beginning of 

the dry season is thought to be an adaptation against 

eventual water loss (Rizzini 1979) that occurs when 

soil moisture becomes limiting and evaporative 

demand increases (Jackson et al. 1999; Franco 2002; 

Bucci et al. 2004), and allows branches without leaves 

to be rehydrated from water acquired from both 

internal water reserves and deeper in the soil profile 

(Reich and Borchert 1984; Rossatto et al. 2012). Thus, 

branch growth and budding can occur during the dry 

season even under soil water deficit (Reich and 

Borchert 1984), and allow the establishment of a 

new cohort of leaves before and during the onset of the 

rainy season (Franco 2002; Lenza and Klink 2006; 

Rossatto et al. 2009). In turn, establishing a new cohort 

of leaves before the wet season can maximize carbon 

gain by increasing rates of C assimilation when the 

first rains begin (Franco et al. 2005; Rossatto et al. 

2009). Furthermore, leaf N and P concentrations have 

been found to increase during the dry season for 

C. americana and V. divergens (Dalmagro et al. 2013) 

and other cerrado tree species (Leitão and Silva 2004), 

as N and P from senescent leaves are translocated to 

new, expanding leaves (Reyes-Arribas et al. 2001). An 

increase in internal water and nutrient reserves 

presumably accounted for the higher rates of leaf 

emergence and branch emergence observed during the 

dry season. 

For the evergreen species (V. divergens), rates of 

leaf abscission peaked during the early dry season, 

while leaf emergence exhibited two peaks, one at the 

onset of the rainy season and the other immediately 

after the end of the wet season. Presumably, the leaf 

emergence at the beginning of the wet season was due 

in part to the leaf abscission that occurred during the 

onset of the previous dry season. However, Silvério 

and Lenza (2010) and Lenza and Klink (2006) found 

that many evergreen cerrado trees have peaks in leaf 

emergence during the wet season, a pattern that 

was reportedly due to drought limitations to leaf 

expansion during the dry season. It is unclear whether 

V. divergens has similar traits; however, several lines 

of evidence, such as little seasonal variation in canopy 

conductance and evapotranspiration (Sanches et al. 

2011; Vourlitis and da Rocha 2011) and the ability to 

redistribute leached nutrients and water from hydrau-

lic redistribution (Vourlitis et al. 2011), indicate that 

V. divergens has a root system that can access deep 

water reserves during the dry season. Rather, we 

speculate that the secondary peak in leaf emergence 

was due to the intense herbivory that occurred on 

V. divergens leaves during the previous August. Leaf 

emergence was significantly positively correlated with 

herbivory but with an 8-month lag, and the secondary 

peak in leaf emergence that occurred in April 2011 

was exactly 8 months after the peak in herbivory. 

Herbivory plays an important role in phenology of 

leaves, and young leaves are often preferred over 

mature leaves due to a lower content of structural 

carbon (Rickfles 2003; Van Asch and Visser 2007). 

Leaves of V. divergens also had relatively higher 

concentrations of N than C. americana (Dalmagro 

et al. 2013), which was not preyed upon with the same 

intensity and may make it less palatable than 

V. divergens (Furlan et al. 1999; Peeters 2002). 

Leaf area was over 3 times higher for C. americana 

than V. divergens, and while species differences in LA 

are largely genetically controlled, LA can be heavily 

influenced by environmental conditions such as 

exposure to sunlight and soil water and nutrient 

availability (Chapin 1991; Pierce et al. 1994; Reich 

et al. 1999; Knops and Reinhart 2000; Dalmagro et al. 

2014). However, environmental variations in LA were 
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insufficient to change the relative difference in LA 

between these species. 

The shorter leaf lifespan for the semi-deciduous 

C. americana is consistent with previous studies 

(Damascos et al. 2005; Lenza 2005, Guimarães 

2011). Plants with shorter leaf lifespan typically have 

higher growth rates than plants with longer leaf 

lifespan (Reich et al. 1999), and while absolute and 

relative leaf growth rates were similar for both species, 

C. americana had a significantly higher relative rate of 

branch growth. Full leaf expansion occurred for both 

species in about 2 months, which is substantially 

shorter than Miconia albicans (92 days), an evergreen 

cerrado tree species, and Leandra lacunosa (76 days), 

a semi-deciduous cerrado tree species (Damascos et al. 

2005). 

In conclusion, we found that the dry season was a 

key trigger for leaf abscission and leaf and branch 

emergence of an evergreen and a deciduous tree 

species of the Brazilian cerrado. A strategy of leaf 

emergence and branch growth initiation during the dry 

season likely maximizes carbon gain by increasing 

rates of C assimilation by plants at the onset of the 

rainy season. These results have implications for 

anthropogenic climate change, which is predicted to 

result in a longer, more intense dry season (Li et al. 

2008; Costa and Pires 2010). In turn, a longer dry 

season would lead to later leaf emergence and earlier 

abscission for C. americana, assuming that leaf 

longevity is somewhat flexible, and a later peak in 

emergence for V. divergens. Presumably, an intensi-

fication of the dry season would affect deciduous 

species more than evergreen species, which were less 

tied to the seasonal variations in meteorology. How-

ever, a longer dry season would reduce the duration 

that both growth forms are fully leafed-out, which 

would likely reduce annual C gain (Franco 2002; 

Lenza and Klink 2006; Rossatto et al. 2009). In 

addition, while meteorological variation was an 

important phenological trigger, other pressures such 

as herbivory also affected schedules of leaf emer-

gence, especially for V. divergens. 

Our study was limited to only two tree species and 

1 year, and clearly, more data, especially over multi-

ple years, are needed to fully understand how leaf and 

stem phenology are affected by meteorological vari-

ation. Even so, the quantitative approach used here 

demonstrated that patterns of leaf and branch phenol-

ogy were related to climatic variations, albeit with lags 

depending on the variable of interest. Our data 

highlight phenological adaptations of cerrado tree 

species and how these adaptations can potentially 

affect productivity and survival in seasonally variable 

environments. 
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